virginialkp.blogg.se

Zovseobecnena metoda momentov
Zovseobecnena metoda momentov






zovseobecnena metoda momentov

The influence of the data series length on the estimation of the N -year discharges by POT method was carried out too. Performance of the POT method was compared to the theoretical distributions (LN, LP3). Two theoretical log-normal (LN) and Log-Pearson III (LP3) distributions were used to calculate the probability of exceeding annual maximum discharges. Based on the POT waves independence criteria the maximum daily discharge data were selected. All mean daily discharges exceeding a defined threshold were considered in the POT analysis. The first part of the paper presents the use of the POT method and how it was applied to daily discharges. The POT method was applied to a time-series of daily discharge values covering a period of 60 years (1931-1990) at the following gauge stations: Achleiten, Kienstock, Wien, Bratislava and Nagymaros. The Peak Over Threshold Method (POT) was used as an alternative technique to the traditional analysis of annual discharge maxima of the Danube River. Za oceno parametrov porazdelitev pa je metoda L-momentov izkazala boljše rezultate kot metoda momentov in metoda največjega verjetja.Īnalysis of extreme hydrological Events on THE danube using the Peak Over Threshold method Med uporabljenimi porazdelitvami je najboljše rezultate dala logaritemsko Pearsonova porazdelitev tipa 3 (LP3). Metoda vrednosti nad izbranim pragom je dala boljše rezultate statističnih testov kot metoda letnih maksimumov.

zovseobecnena metoda momentov

S pomočjo statističnih in grafičnih testov smo primerjali rezultate analiz in določili razlike med obema metodama. Pri tem smo uporabili najpogosteje uporabljene porazdelitvene funkcije in tri načine ocenjevanja parametrov. Verjetnostno analizo smo naredili z metodo letnih maksimumov (AM metoda) in z metodo vrednosti nad izbranim pragom (POT metoda). Analizirali smo 58 let podatkov dnevnih vrednosti pretokov z vključenimi maksimalnimi konicami z vodomerne postaje Litija 1 na reki Savi.

zovseobecnena metoda momentov

More recently, it has been applied by Eugene Wigner to prove Wigner's semicircle law, and has since found numerous applications in the theory of random matrices.Kvalitetno izvedena verjetnostna analiza visokovodnih konic je pogoj za določitev povezave med ocenjeno vrednostjo pretoka in pripadajočo povratno dobo oziroma verjetnostjo. The method of moments was introduced by Pafnuty Chebyshev for proving the central limit theorem Chebyshev cited earlier contributions by Irénée-Jules Bienaymé. Suppose X is a random variable and that all of the momentsĮ ⁡ ( X k ) converges to X in distribution. In probability theory, the method of moments is a way of proving convergence in distribution by proving convergence of a sequence of moment sequences. See method of moments (disambiguation) for other techniques bearing the same name. This article is about the method of moments in probability theory.








Zovseobecnena metoda momentov